Skip to main content

37 posts tagged with "kubernetes"

View All Tags

· 9 min read

Knative Routing

Knative는 앞에서도 몇번 언급하였지만 기본적으로 Routing을 사용하여 외부에 노출할 서비스들에 대한 HTTP Endpoint를 제공한다. 어떻게 보면 기본적으로 API Gateway 역할을 하기도 하고 Ingress 역할을 하기도 한다. 보통 Service mesh인 Istio를 사용하여 ingress를 구현하는것이 당연하다고 생각하기도 하지만 Istio의 모든 기능이 Knative에 필요하지는 않고 설치되는것 자체가 리소스 소모가 꽤 된다는것은 설치 해본사람은 알고 있을것이다.

Service

Kubernetes

ingress
이미지출처 : https://www.nginx.com/blog/announcing-nginx-ingress-controller-for-kubernetes-release-1-3-0/

Kubernetes에서는 일반적으로 서비스 접속을 구현하게 되면 기본적으로 Pod와 Service를 생성하고 Ingress를 사용하여 클러스터 내부로 들어오는 트래픽을 처리하게 된다.

Knative

Serving
이미지출처 : https://blog.openshift.com/knative-serving-your-serverless-services/

Knative에서는 앞선 Knative 관련 포스팅에서도 설명했듯이 Automatic scaling up and down to zero 특성을 가지고 있기에 Pod가 최초 실행되어있지 않은 상태에서 트래픽이 들어오게 되면 Knative Serving Activator에 의해서 Pod가 없는 Revision을 확인하고 Cold Start 형태로 프로비저닝하게 된다. 나는 이게 진정한 서버리스라고 생각하지만 주변에 반박하시는 분들도 간혹 있다.

이후 Pod가 Warm 상태가 되고 나면 Istio Route(Ingress Gateway)를 통해 트래픽이 Pod로 전달되어 통신이 이뤄지게 된다.

현재 Knative는 현재 Ingress Gateway 의존성을 가지고 있고 Envoy기반 Service Mesh인 Istio, Envoy기반 API Gateway인 Gloo 두가지 옵션으로 Ingress 구현이 가능하다.

Istio

Knative는 기본적으로 Ingress Gateway기능을 탑재하고 있는데 이는 Istio의 기능중 하나다.
Istio는 다음과 같은 Core Feature를 가진다. 상세한 내용은 https://istio.io/docs/concepts/what-is-istio/ 에서 확인하면 된다.

  • Traffic management
  • Security
  • Policies and Telemetry
  • Performance and Scalability

Istio는 48개의 CRDs(CustomResourceDefinition objects)를 가지고 있는데 이중 Knative Serving에서 사용하는건 VirtualService 단 하나다.

Gloo

Gloo는 Kubernetes-native ingress controller이자 Next Generation API Gateway 를 위해 시작된 프로젝트이다. 실제 Redhat에서 Openshift기반 Microservice 및 Istio 개발업무를 하다가 최근에 solo.io의 CTO로 이직한 Christian Posta가 밀고 있는 프로젝트이기도 하다.

gloo

Gloo는 Envoy Proxy 기반으로 동작하며 기존 Legacy부터 Container서비스, FaaS(AWS Lambda, Azure Functions, GCP Functions)영역의 Application들을 REST, gRPC, SOAP, Web Socker기반으로 Aggregate 해서 Function 기반 추상화를 구현해 주는 오픈소스 프로젝트라 정의 할 수 있다.

Istio의 Ingress기능외의 여러가지 부가 기능(Telemetry, Security, Policy Enforcement)들은 Knative에서는 필요로 하지 않는다.

Knative API Gateway 로서 Istio가 아닌 Gloo가 조금더 경량화된 대안으로 결정되었고 Gloo를 통해 Knative 설치가 가능하게 되었다. 단, Knative Eventing 컴포넌트는 현재 지원하지 않는다고 한다.

Install Knative with Gloo

참고: Install with Gloo

간단하게 gloo와 Knative 설치를 해보자.

Requirements

Install Glooctl

gloo CLI (glooctl) Download
https://github.com/solo-io/gloo/releases

또는 직접 Download

$ curl -sL https://run.solo.io/gloo/install | sh
Attempting to download glooctl version v0.8.1
Downloading glooctl-darwin-amd64...
Download complete!, validating checksum...
Checksum valid.
Gloo was successfully installed 🎉

Add the gloo CLI to your path with:
export PATH=$HOME/.gloo/bin:$PATH

Now run:
glooctl install gateway # install gloo's function gateway functionality into the 'gloo-system' namespace
glooctl install ingress # install very basic Kubernetes Ingress support with Gloo into namespace gloo-system
glooctl install knative # install Knative serving with Gloo configured as the default cluster ingress
Please see visit the Gloo Installation guides for more: https://gloo.solo.io/installation/

PATH 등록

$ export PATH=$HOME/.gloo/bin:$PATH

gloo CLI 확인

$ glooctl --version
glooctl version 0.8.1

GCP 무료플랜으로 3-node 클러스터를 생성한다.

$ gcloud container clusters create gloo \
--region=asia-east1-a \
--cluster-version=latest \
--machine-type=n1-standard-2 \
--enable-autorepair \
--num-nodes=3

cluster 생성된것을 확인하고 cluster-admin 권한을 할당한다.

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
gke-gloo-default-pool-f6bcc479-f8v9 Ready <none> 9m v1.11.7-gke.6
gke-gloo-default-pool-f6bcc479-fl78 Ready <none> 9m v1.11.7-gke.6
gke-gloo-default-pool-f6bcc479-gfgw Ready <none> 9m v1.11.7-gke.6

$ kubectl create clusterrolebinding cluster-admin-binding \
> --clusterrole=cluster-admin \
> --user=$(gcloud config get-value core/account)
Your active configuration is: [cloudshell-25974]
clusterrolebinding.rbac.authorization.k8s.io "cluster-admin-binding" created

Gloo와 Knative 설치를 한다. 미리 glooctl install knative --dry-run 으로 전체 manifest를 확인할 수 있다.

$ glooctl install knative

위에서 설치 과정은 생략했지만 Istio에 비해 CRD 개수가 적은 것을 알수있다. 또한 설치된 컴포넌트 역시 Istio에 비해서 간소화된 것을 알수 있다.

$ kubectl get pods --namespace gloo-system                                                                                         
NAME READY STATUS RESTARTS AGE
clusteringress-proxy-59fd6fb56-dmwwm 1/1 Running 0 7m
discovery-779884d4cc-xlql2 1/1 Running 6 7m
gloo-844fc79445-f4zvg 1/1 Running 6 7m
ingress-7d75c99874-s4m76 1/1 Running 6 7m

$ kubectl get pods --namespace knative-serving
NAME READY STATUS RESTARTS AGE
activator-746f6bb684-49tfh 1/1 Running 0 12m
autoscaler-955f679cd-tx5vw 1/1 Running 0 12m
controller-7fc84c6584-jbn69 1/1 Running 0 12m
webhook-7797ffb6bf-6pgsw 1/1 Running 0 12m

이전 포스팅에서도 사용했던 gcr.io/knative-sample/helloworld-go 이미지를 활용하여 샘플앱 Knative Service를 만든다.

service.yaml

$ vi service.yaml

apiVersion: serving.knative.dev/v1alpha1
kind: Service
metadata:
name: helloworld-go
namespace: default
spec:
runLatest:
configuration:
revisionTemplate:
spec:
container:
image: gcr.io/knative-sample/helloworld-go
env:
- name: TARGET
value: "Go Sample v1"
$ kubectl apply --filename service.yaml
service.serving.knative.dev "helloworld-go" created

앞에서도 설명했지만 Automatic scaling up and down to zero 으로 Cold Start가 되고 잠시후에 아래와 같이 Knative Service를 확인할 수 있다.

$ kubectl get ksvc helloworld-go -n default  --output=custom-columns=NAME:.metadata.name,DOMAIN:.status.domain]($ kubectl get ksvc helloworld-go -n default  --output=custom-columns=NAME:.metadata.name,DOMAIN:.status.d
omain
NAME DOMAIN
helloworld-go helloworld-go.default.example.com

Gloo Ingress를 확인한다. GKE에서 설치했기 때문에 자동으로 LoadBalancer가 연동되어 있는것을 확인할 수 있다.

$ kubectl get svc -n gloo-system
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
clusteringress-proxy LoadBalancer 10.3.244.54 34.**.**.54 80:30978/TCP,443:32448/TCP 39m
gloo ClusterIP 10.3.243.231 <none> 9977/TCP 39m

$ glooctl proxy url --name clusteringress-proxy
http://34.**.**.54:80

위에서 얻은 두가지 정보로 생성된 app을 테스트한다. Cold Start(default timeout 5분) 때문에 응답이 늦어질 수도 있지만 잠시 기다리면 응답을 확인할 수 있다.

$ curl -H "Host: helloworld-go.default.example.com" http://34.**.**.54:80
Hello Go Sample v1!

물론 Revision이나 Route를 활용하여 Knative의 기능에 대해서도 확인이 가능하다.

정리

Gloo는 Knative ClusterIngress CRD를 기반으로 동작하는 Istio의 대안으로서 가능성을 보여주고 있다. 이외에도 The Service Mesh Orchestration Platform SuperGloo, Debugger for microservices Squash 등 다양한 Mesh Layer기반의 오픈소스들을 확인할수 있다. 또다른 스쳐지나갈수도 있는 오픈소스일수도 있겠지만 현재 개발되는 로드맵(https://www.solo.io/)을 보면 Knative가 고도화되는 여정에 같이 가는 모습을 확인할 수 있다.

next-generation API Gateway로서 다양한 프로토콜을 지원하기 때문에 (HTTP1, HTTP2, gRPC, REST/OpenAPISpec, SOAP, WebSockets, Lambda/Cloud Functions) 더욱더 Microservices 및 Serverless Workload를 수행하기에 더욱 적합한 오픈소스로 보인다.

다음 주제

현재 해보고 싶은것은 베어메탈 Kubernetes Cluster기반 BGP로 동작하는 MetalLBCillium on AWS 인데 시간나는 대로 테스트 해봐야 겠다.

· 15 min read

knctl

knctl 은 Knative CLI 툴로 간단하게 knative cluster를 만들고 Knative를 추상화해서 앱까지 배포할 수 있는 오픈소스이다.

참고

Knative 다시 살펴보기

앞선 포스팅에서도 이야기 했지만 기존 FaaS(AWS Lambda, Google Cloud Funtions, Azure Function) 과는 다른 Serverless 개념으로 받아들어야 한다.

다시 한번 특징을 나열해보면 아래와 같다.

  • Serverless Container의 신속한 배치
  • Automatic scaling up and down to zero
  • Istio를 백엔드로 활용하여 Routing 구현
  • 배포 된 코드 및 config의 특정 시점 스냅 샷

그리고 다음과 같은 CRDs(Custom Resource Definitions)로 구성된 오브젝트들로 정의된다.

  • Route는 사용자 서비스에 대한 HTTP endpoint와 Routing을 제공한다.
  • Revisions은 code(function)와 config로 구성된 불변의 스냅샷. Route를 통해 endpoint를 할당받지 못한 Revision은 자동으로 kubernetes resource에서 삭제됨
  • Configuration은 요구되는 Revision 최신 상태를 기록하고 생성하고 추적할수 있음. 소스 패키지(git repo나 archive)를 컨테이너로 변환하기 위한 내용이나 메타데이터등을 포함시킬수 있음.
  • ServiceRoutesConfigurations 리소스의 추상화된 집합체. 모든 워크로드의 lifecycle을 관리함. 트래픽을 항상 최신의 Revision으로 route되도록 정의할수 있음

하나씩 조금 자세히 이야기 하면 아래처럼 정리 할수 있다.

Route

Route는 사용자 서비스(Code와 Configuration의 Revision정보)의 네트워크 Endpoint를 제공한다. kubernetes namespace는 여러개의 Route를 가질수 있다. Route는 하나 이상의 Revisions을 가지면서 수명이 길고 안정적인 HTTP Endpoint를 제공한다. 기본구성은 Route 객체가 Configuration에 의해 생성된 최신의 Revision으로 트래픽을 자동으로 지정한다. 조금더 복잡한 경우로는 istio의 기능을 활용하여 트래픽을 백분율 기준으로 Route를 지정할 수 있다.

Revision

Revision은 Code와 Configuration의 불변의 스냅샷이다. 하나의 Revision은 컨테이너 이미지를 참조하고 선택적으로 Build를 참조할 수 있다. RevisionConfiguration이 업데이트 시 생성된다.
Route를 통해 http주소 지정이 불가능한 Revision은 폐기 되고 관련된 kubernetes 리소스가 삭제가 된다. 시간이 지남에 따라 Configuration이 생성한 Revision 히스토리가 제공되고 사용자는 이전 Revision로 쉽게 롤백 할 수 있다.

Configuration

Configuration은 최신의 Revision상태를 설명하고, 생성하고, 원하는 상태가 갱신될때 Revision의 상태를 추적한다. ConfigurationBuild를 참조하여 소스(git repo 또는 archive)를 컨테이너로 변환하는 방법에 대한 가이드가 포함되어 있거나 단순히 컨테이너 이미지 및 수정에서 필요한 메타 데이터 만 참조 할 수 있다.

Product Integration

2019년 2월 현재 0.3이 릴리스되고 있고 벌써 여러 제품에 통합이 되고 있다.

최근 IBMthink 2019에서 Managed Knative (Experimental)를 내놓기도 하였다.
https://www.ibm.com/blogs/bluemix/2019/02/announcing-managed-knative-on-ibm-cloud-kubernetes-service-experimental/

Istio를 포함한 Knative 마저도 품는 모습으로 managed kubernetes 영역에서 글로벌 플레이어들 모두 서로 치고나가는 모습들을 볼수 있다.

작년 11월에는 Gitlab 제품안에 serverless라는 extension형태의 서비스가 추가 되기도 하였고,
https://about.gitlab.com/press/releases/2018-12-11-gitlab-and-triggermesh-announce-gitlab-serverless.html

triggermesh 라는 곳에서는 serverless management platform이라는 이름으로 knative 기반 멀티 서버리스 플랫폼을 출시하기도 하였다.
https://triggermesh.com/serverless_management_platform/

Pivotal Function Service (PFS), Google GKE SERVERLESS ADD-ON 등은 아직 early access 신청만 받고 있는 상태이다.

오늘은 간단하게 배포할수 있는 툴 knctl과 관련 use-case를 소개하고자 한다.

Kubernetes Cluster 생성

일단 GKE Free tier에서 Cluster를 하나 생성하자.

gcloud container clusters create knative \
--region=asia-east1-a \
--cluster-version=latest \
--machine-type=n1-standard-2 \
--enable-autoscaling --min-nodes=1 --max-nodes=5 \
--enable-autorepair \
--scopes=service-control,service-management,compute-rw,storage-ro,cloud-platform,logging-write,monitoring-write,pubsub,datastore \
--num-nodes=3

cluster 생성된것을 확인하고 cluster-admin 권한을 할당한다.

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
gke-knative-default-pool-d1a39347-5m5t Ready <none> 1m v1.11.7-gke.4
gke-knative-default-pool-d1a39347-l6zh Ready <none> 1m v1.11.7-gke.4
gke-knative-default-pool-d1a39347-qv5r Ready <none> 1m v1.11.7-gke.4

$ kubectl create clusterrolebinding cluster-admin-binding \
--clusterrole=cluster-admin \
--user=$(gcloud config get-value core/account)
Your active configuration is: [cloudshell-4728]
clusterrolebinding.rbac.authorization.k8s.io "cluster-admin-binding" created

knctl 설치

이번 포스팅에서는 Mac OS 설치 기준으로 작성하였다.

homebrew 설치

brew install starkandwayne/kubernetes/knctl

binary

https://github.com/cppforlife/knctl/releases

$ wget https://github.com/cppforlife/knctl/releases/download/v0.1.0/knctl-darwin-amd64
$ mv knctl-* /usr/local/bin/knctl
$ chmod +x /usr/local/bin/knctl

knctl 로 Knative 배포

설치한 knctl로 Knative 배포를 진행한다. 설치되는 내용을 지켜보고 있으면 istio를 먼저 배포하고 그다음에 Knative를 설치하는 것을 확인할 수 있다. 배포되는 모듈들의 상태를 하나하나 체크해서 배포하기 때문에 설치상에 과정들을 확인할 수 있다.

$ knctl install --exclude-monitoring

테스트를 위한 namespace hello-test를 생성한다.

$ kubectl create namespace hello-test
namespace "hello-test" created

knctl deploy 명령으로 최초 revision을 배포한다.
아래 결과를 보면 hello-00001 이라고 하는 최초의 revision을 작성하기 때문에 latest tag를 달고 배포를 하게 된다.

$ knctl deploy \
--namespace hello-test \
--service hello \
--image gcr.io/knative-samples/helloworld-go \
--env TARGET=Rev1

Name hello

Waiting for new revision to be created...

Tagging new revision 'hello-00001' as 'latest'

Tagging new revision 'hello-00001' as 'previous'

Annotating new revision 'hello-00001'

Waiting for new revision 'hello-00001' to be ready for up to 5m0s (logs below)...

hello-00001 > hello-00001-deployment-5cdbfc9bc9-hks6t | 2019/02/17 22:27:50 Hello world sample started.

Revision 'hello-00001' became ready

Continuing to watch logs for 5s before exiting

Succeeded
kubectl get svc knative-ingressgateway -n istio-system
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
knative-ingressgateway LoadBalancer 10.63.253.209 34.***.***.248 80:32380/TCP,443:32390/TCP,31400:32400/TCP,15011:30082/TCP,8060:31125/TCP,853:32009/TCP,15030:31102/TCP,15031:31631/TCP 6h

위처럼 Knative가 프로비저닝 되면서 ingress-gateway가 하나 생성이 되어있는 것을 확인할 수 있고 knctl로도 ingress를 확인이 가능하다.

$ knctl ingress list
Ingresses

Name Addresses Ports Age
knative-ingressgateway 34.***.***.248 80 6h
443
31400
15011
8060
853
15030
15031

1 ingresses

Succeeded

Knative custom domain 연결

Domain이 별도로 없기 때문에 Knative는 내부적으로 example.com이라고 하는 기본 domain을 사용한다. 그래서 실제 knctl curl 명령은 내부적으로 hello.hello-test.example.com으로 curl을 실행하게 되고 해당 결과를 아래와 같이 확인할 수 있다.

$ knctl curl --service hello -n hello-test
Running: curl '-sS' '-H' 'Host: hello.hello-test.example.com' 'http://34.***.***.248:80'

Hello Rev1!

Succeeded

kubernetes node가 3개이므로 3개의 pod가 생성된 것을 확인할 수 있다. 일정시간(default:5분)이 지나면 zero to scale 관점에서 pod가 종료되므로 다시 확인할때는 다시 curl 명령을 날리게 되면 다시 pod가 올라오게 된다. 해당 개념은 FaaS또는 AWS Lambda에서 Cold-Start와 동일한 것이라 볼 수 있다.

AWS Cold Start 참고 : https://novemberde.github.io/aws/2018/02/02/Lambda_coldStart.html

$ kubectl get po
NAME READY STATUS RESTARTS AGE
hello-00001-deployment-5cdbfc9bc9-hks6t 3/3 Running 0 4m

가지고 있는 도메인이 있다면 위에서 나온 34.***.***.248 IP를 domain에 매핑해보자. 아래에서는 기존 보유중인 skcloud.io 도메인을 연결하였다.

$ dig knative.skcloud.io
;; ANSWER SECTION:
knative.skcloud.io. 603 IN A 34.***.***.248

knctl domain을 이용하여 default domain을 knative.skcloud.io로 변경한다.

$ knctl domain create -d knative.skcloud.io --default
Succeeded

knctl routes 명령으로 해당 hello-test app의 Endpoint 정보를 확인할 수 있다.

$ knctl routes list -n hello-test
Routes in namespace 'hello-test'

Name Domain Traffic Annotations Conditions Age
hello hello.hello-test.knative.skcloud.io 100% -> hello - 3 OK / 3 1h

1 routes

Succeeded

5분이상 기다렸다가 curl로 확인하면 Cold-Start 되는 시간(몇초) 지연이 발생하고 결과를 확인할 수 있다. 이후에는 바로 응답을 확인할 수 있다.

$ curl http://hello.hello-test.knative.skcloud.io/
Hello Rev1!

revision 추가

이번에는 revision을 추가해보자. TARGET environment 변수를 Rev2로 수정하고 배포를 한다. 기존 hello-00002 revision이 최신 revision으로 갱신되어 배포가 되는것을 확인할 수 있다.

$ knctl deploy --service hello \
--image gcr.io/knative-samples/helloworld-go \
--env TARGET=Rev2
Name hello

Waiting for new revision (after revision 'hello-00001') to be created...

Tagging new revision 'hello-00002' as 'latest'

Tagging older revision 'hello-00001' as 'previous'

Annotating new revision 'hello-00002'

Waiting for new revision 'hello-00002' to be ready for up to 5m0s (logs below)...

hello-00002 > hello-00002-deployment-6cf86bbfc7-sblz9 | 2019/02/17 23:25:43 Hello world sample started.

Revision 'hello-00002' became ready

Continuing to watch logs for 5s before exiting

Succeeded

신규 revision 서비스를 추가된것을 확인할 수 있다. 마찬가지로 몇초간의 Cold-Start delay가 발생할 수도 있다.

$ curl http://hello.hello-test.knative.skcloud.io/
Hello Rev2!

$ knctl curl --service hello
Running: curl '-sS' '-H' 'Host: hello.hello-test.knative.skcloud.io' 'http://34.***.***.248:80'

Hello Rev2!

Succeeded

revision list를 확인해보면 현재 latest, previous TAG정보를 확인할 수 있다.

$ knctl revision list --service hello
Revisions for service 'hello'

Name Tags Annotations Conditions Age Traffic
hello-00002 latest - 1 OK / 4 14m 100% -> hello.hello-test.knative.skcloud.io
hello-00001 previous - 1 OK / 4 4h -

2 revisions

Succeeded

Blue/Green 배포

Blue/Green Deploy는 knctl rollout 명령으로 수행할수 있다.
rollout 할때 --managed-route=false 옵션을 줘야 특정 비율로 routing이 가능하다.
아래 예시는 TARGET environment 변수를 blue, green으로 바꿔가면서 배포를 진행하였다.

$ knctl deploy --service hello \
--image gcr.io/knative-samples/helloworld-go \
--env TARGET=blue \
--managed-route=false
Name hello

Waiting for new revision (after revision 'hello-00002') to be created...

Tagging new revision 'hello-00003' as 'latest'

Tagging older revision 'hello-00002' as 'previous'

Annotating new revision 'hello-00003'

Waiting for new revision 'hello-00003' to be ready for up to 5m0s (logs below)...

Revision 'hello-00003' became ready

Continuing to watch logs for 5s before exiting

hello-00003 > hello-00003-deployment-99478dcc5-jf267 | 2019/02/17 23:48:20 Hello world sample started.

Succeeded

revision list를 확인하면 아래와 같이 latest로 Traffic 전체가 routing 되는 것을 확인할 수 있다.

$ knctl revision list --service hello
Revisions for service 'hello'

Name Tags Annotations Conditions Age Traffic
hello-00005 latest - 4 OK / 4 44s 100% -> hello.hello-test.knative.skcloud.io
hello-00004 previous - 4 OK / 4 2m -
hello-00003 - - 1 OK / 4 5m -
hello-00002 - - 1 OK / 4 28m -
hello-00001 - - 1 OK / 4 4h -

5 revisions

Succeeded

이후에 rollout을 통해 previous로 90%, latest로 10%로 변경을 하면 즉시 반영이 되고 실제 트래픽도 분산되어 들어온다. %가 낮은 쪽으로 routing이 될 경우 Cold-Start가 발생하게 되면 delay는 발생하게 된다.

$ knctl rollout --route hello -p hello:latest=10% -p hello:previous=90%
Succeeded

$ knctl revision list
Revisions

Service Name Tags Annotations Conditions Age Traffic
hello hello-00005 latest - 2 OK / 4 1h 10% -> hello.hello-test.knative.skcloud.io
~ hello-00004 previous - 2 OK / 4 1h 90% -> hello.hello-test.knative.skcloud.io
~ hello-00003 - - 1 OK / 4 1h -
~ hello-00002 - - 1 OK / 4 1h -
~ hello-00001 - - 1 OK / 4 5h -

5 revisions

Succeeded

간단하게 curl 반복문을 작성하여 돌려보자.

#!/bin/sh
while true
do
curl -sS --max-time 3 http://hello.hello-test.knative.skcloud.io/
done

간단하게 위 sh을 돌리면 아래와 같이 Cold-Start delay가 발생할때 time out이 발생하고 이후 green revision으로 접속이 되는것을 볼 수 있다.

$ ./test.sh
curl: (28) Operation timed out after 3002 milliseconds with 0 bytes received
Hello blue!
Hello blue!
Hello blue!
Hello blue!
Hello blue!
curl: (28) Operation timed out after 3003 milliseconds with 0 bytes received
Hello blue!
Hello blue!
Hello blue!
Hello blue!
Hello blue!
Hello blue!
Hello green!
Hello blue!
Hello blue!
Hello blue!

정리

지금까지 knctl을 사용하여 간단하게 knative를 배포하고 custom domain을 연결하여 blue-green 배포까지 해봤다. 이외에도 Knative Build를 활용하여 Docker image 작업을 하거나 서비스 카탈로그 등을 연동하여 외부 DBaaS를 연동하는 use-case등을 찾아볼수 있다.

아직 초기 단계이지만 Knative는 istio와 함께 IBM, Google, Pivotal등 global player들의 차세대 오픈소스로 부상하고 있다고 볼 수 있다.

Zero to scale 이라는 슬로건아래 Serverless, FaaS 사상을 기반으로 build, serving, event, routing이라고 하는 Cloud Computing 추상화의 끝판으로 진화하고 있다. 앞으로 어떤 모습으로 진화될지 궁금하고 다음번에는 MQ나 Pub/sub를 연동하거나 멀티 클라우드 환경에서 동작하는 모습을 보여주는 것도 좋을것 같다. 희망사항이지만 올해 OpenInfraDay나 Kubernetes Day Korea 행사에서 Hands-on을 진행해보는것도 좋지 않을까?

· 15 min read

3번째 포스팅이다.

11/23 "Kubernetes Meetup" 1Day에서 발표한 이야기 연장선으로 작성한다.

고객에게 오퍼링을 위해 준비한 내용과 Kubernetes monitoring과 연계한 내용에 대해서 적어보려고 한다. 최근 발표를 다니면서 많이 받는 질문이 실제 사용할만 한가?라는 질문과 어떻게 활용해야 하는지에 대한 질문들을 많이 받는다. 오늘 최근 Spinnaker Summit 2018에서 중요하게 다뤘던 Kayenta 프로젝트를 가지고 이야기 해보려고 한다.

Kayenta

Kayenta는 자동 Canary 분석 오픈소스(Automated Canary Service(ACA))로 Spinnaker의 마이크로서비스중 하나로 동작한다.
Automated Canary Deployments에 사용되고 자세한 내용은 canary documentation을 확인하면 된다.

새 종류의 하나인 Canary는 1차 세계대전중에 인간이 해를 입기 전에 독성가스를 탐지하는 용도로 사용되었다고 한다. DevOps에서는 CD(Continuous Deployment) 프로세스의 일부로 사용되며 Canary 릴리즈는 새로운 버전의 Software를 Production에 배포하는 위험을 줄여주는 기술이라고 생각하면 된다.

Canary 신규 버전의 Software를 안정적인 기존 버전과 함께 배포하고 특정사용자나 일부 대상에게 트래픽 일부를 흘려 기존 사용자에게 영향을 최소하하고 새로운 버전의 문제를 신속하게 발견하고 이전의 안정된 버전으로 트래픽을 다시 라우팅시키는것이 주요 기능이라고 보면 된다.

보통 품질 테스트 용도로 현재 운영 버전과 신규 버전의 주요한 지표(주로 Prometheus Metric)를 비교하여 평가를 진행하는데 이를 단위 테스트나 통합 테스트를 대체하여 사용해서는 절대 안된다.
위에서 언급하였듯이 예기치 않은 위험을 최소화 하거나 문제를 신속하게 발견하는 것을 주 목적으로 하기 때문이다.

Spinnaker에서는 기본적으로 3가지 Cluster(Logical Application Group)를 사용한다.

  • Production Cluster - 현재 실행중인 운영 버전으로 Replica는 임의로 변경할 수 있다.
  • Baseline Cluster - Production Cluster와 동일한 버전으로 실행됨
  • Canary Cluster - 변경된 신규 버전의 Software로 실행됨

기본적으로 수동으로 진행할 경우에는 로그와 수집된 메트릭을 분석하고 객관적인 지표로 평가를 진행하는게 기본이다. 하지만 직접 사람이 하는 일이라 메트릭 데이터를 보다 보면 편견과 착오가 발생할 수 밖에 없다.

그래서 Netflix는 ACA(Automated Canary Service)라고 하는 자동화된 접근 방식을 통해 카나리 분석을 진행하고 있다. 수동으로 계산된 여러가지 지표를 가중치 기반으로 점수를 내리고 원하는 점수에 도달하면 배포하는 자동화된 방식이다.

Requirements

  • spinnaker cluster - 1.8+ (1.9.3 이상 추천)
  • halyard - 1.0+
  • kubernetes cluster - 1.9+
  • metric services - datadog, prometheus, stackdriver, signalfx
  • persistent storage - S3(or compatible S3), minio, GCS

Kayenta Service 추가하기

이번 포스팅에서는 아래 환경으로 작성하였다.

  • spinnaker cluster - 1.10.5
  • halyard - 1.11
  • kubernetes cluster - 1.9.7
  • metric services - prometheus
  • persistent storage - compatible S3(IBM Object Storage)

일단 기존 halyard config를 백업하자.

$ hal backup create
+ Create backup
Success
+ Successfully created a backup at location:
/Users/ddii/halbackup-Wed_Nov_28_13-35-31_KST_2018.tar

나중에 복구는 아래와 같이 하면 된다.

$ hal backup restore --backup-path <backup-name>.tar

기존 halyard config를 살펴보면 아래와 같이 canary.enabled=false 로 되어있는 것을 확인 할수 있다.

currentDeployment: default
deploymentConfigurations:
- name: default
canary
enabled: false

canary analysis을 활성화 한다.

$ hal config canary enable

그리고 default judgement algorithm은 NetflixACAJudge-v1.0 로 되어있다 다른 걸 이용하려면 다음과 같이 설정할수 있다.

$ hal config canary edit --default-judge CUSTOM_JUDGE

메트릭 소스로 prometheus를 설정한다. 물론 기존에 사용중인 prometheus endpoint url이 필요하다.

hal config canary prometheus enable
hal config canary prometheus account add my-prometheus --base-url http://YOUR_PROMETHEUS_SERVER:PORT

여기서는 IBM Cloud Object Storage(S3 Compatible)을 사용하였지만 aws로 설정한다.

$ hal config canary aws enable
$ hal config canary aws account add my-s3 --bucket spin-bucket --endpoint \
s3.seo-ap-geo.objectstorage.service.networklayer.com --access-key-id ACCESS_ID \
--secret-access-key
$ hal config canary aws edit --s3-enabled=true

여러개의 메트릭을 동시에 설정 및 수집이 가능하므로 그중 prometheus 및 관련 account를 기본으로 설정한다.

$ hal config canary edit --default-metrics-store prometheus
$ hal config canary edit --default-metrics-account my-prometheus
$ hal config canary edit --default-storage-account my-s3

모든 spinnaker cluster가 준비된 상태의 컨피그는 아래와 같다.

currentDeployment: default
deploymentConfigurations:
- name: default
canary:
enabled: true
serviceIntegrations:
- name: google
enabled: false
accounts: []
gcsEnabled: false
stackdriverEnabled: false
- name: prometheus
enabled: true
accounts:
- name: my-prometheus
endpoint:
baseUrl: http://YOUR_PROMETHEUS_SERVER:PORT
supportedTypes:
- METRICS_STORE
- name: datadog
enabled: false
accounts: []
- name: aws
enabled: true
accounts:
- name: my-s3
bucket: spin-bucket
rootFolder: kayenta
endpoint: s3.seo-ap-geo.objectstorage.service.networklayer.com
accessKeyId: ACCESS_ID
secretAccessKey: ACCESS_KEY
supportedTypes:
- OBJECT_STORE
- CONFIGURATION_STORE
s3Enabled: true
reduxLoggerEnabled: true
defaultMetricsAccount: my-prometheus
defaultStorageAccount: my-s3
defaultJudge: NetflixACAJudge-v1.0
defaultMetricsStore: prometheus
stagesEnabled: true
templatesEnabled: true
showAllConfigsEnabled: true

Spinnaker Cluster를 재배포하게 되면 아래와 같이 spin-kayenta deployments가 추가된 것을 확인할 수 있다.

$ hal deploy apply

$ kubectl get pod
NAME READY STATUS RESTARTS AGE
spin-clouddriver-555cfc9765-kvnl8 1/1 Running 0 6d
spin-deck-85845b5b48-49ncm 1/1 Running 0 6d
spin-echo-5f9dd4d8ff-mvt7g 1/1 Running 0 6d
spin-fiat-5b945645d8-s2qcq 1/1 Running 0 6d
spin-front50-5c57fcf587-tqz28 1/1 Running 0 6d
spin-gate-57576b8c45-w5v6r 1/1 Running 0 6d
spin-kayenta-6dcd7767d6-rgb9w 1/1 Running 0 6d
spin-orca-788df6b9cc-tk6lk 1/1 Running 0 6d
spin-redis-6c87c456fc-6qbl2 1/1 Running 0 6d
spin-rosco-f6f845d49-btjnd 1/1 Running 0 6d

이후 Dashboard에 접속하고 application중 하나의 Config에 들어가면 Features에 Canary메뉴가 생긴것을 확인할 수 있다. 사용설정하고 캐싱하는데 시간이 다소 필요하고 Tasks 메뉴에서 해당 job에 대한 내용을 확인할수 있다.

canary

이후 application delivery 메뉴를 보면 pipelines, canary configs, canary reports라는 메뉴가 생기게 된다.

delivery

simple deploy pipeline 추가

https://cloud.google.com/solutions/automated-canary-analysis-kubernetes-engine-spinnaker 가이드 처럼 구성해봐도 되나 stackdriver를 써야하고 prometheus metric을 활용한 가이드가 필요해서 적어보고자 한다.

새로 파이프라인을 추가한 다음

newpipe

Pipeline Actions - Edit Pipeline JSON 에서 https://raw.githubusercontent.com/ddiiwoong/canary-demo-spinnaker/master/simple-deploy.json 을 추가해준다.

해당 json pipeline을 추가하고 나면 다음과 같은 화면을 확인할수 있다. pipe1 pipe2

반드시 Deploy Config, Deploy Stage에서 배포할 Account 지정을 해야한다.

sampleapp image - ddiiwoong/canary-demo-spinnaker:latest

해당 pipeline내의 sampleapp은 python flask 기반으로 구성되어 간단히 internal 500 error를 원하는 비율을 configmap 변수로 구현할 수 있다. prometheus python client를 사용하여 Gauge, Counter, Metric 서버를 간단하게 구성을 해보았다. 그리고 코드내에서 500 error rate를 구한 이유는 18년 11월 기준 spinnaker kayenta 버전에서는 PromQL(rate,irate와 같은 함수) 지원이 되지 않는다. 개발중인 코드에 포함이 된것을 확인하였고 12월 kubecon때 정식 릴리즈에 포함될거라 생각한다.

#!/usr/bin/env python

from random import randrange
from flask import Flask
from prometheus_client import start_http_server, Gauge, Counter
import os

app = Flask('kayenta-tester')
c = Counter('requests', 'Number of requests served, by http code', ['http_code'])
g = Gauge('rate_requests', 'Rate of success requests')

responce_500 = 0
responce_200 = 0
rate_responce = 0

@app.route('/')
def hello():
global responce_500
global responce_200
global rate_responce
if randrange(1, 100) > int(os.environ['SUCCESS_RATE']):
c.labels(http_code='500').inc()
responce_500 = responce_500 + 1
rate_responce = responce_500 / (responce_500+responce_200) * 100
g.set(rate_responce)
return "Internal Server Error\n", 500
else:
c.labels(http_code = '200').inc()
responce_200 = responce_200 + 1
rate_responce = responce_500 / (responce_500+responce_200) * 100
g.set(rate_responce)
return "Hello World!\n"

start_http_server(8000)
app.run(host = '0.0.0.0', port = 8080)

해당앱을 Start Manual Execuction을 통해 배포한다. Comfirm Execution창에서 SUCCESS_RATE를 원하는 값(예:70%)으로 선택하고 배포를 하고 나면 Infrastructure - Clusters 메뉴에서 해당 샘플앱을 확인할 수 있다.

manaul deploy success rate manaul deploy2

실제 해당 서비스를 접속해보면 위에 설정한 SUCCESS_RATE 비율로 200화면과 500에러를 확인할 수 있다.

flaskweb flaskweb2

해당 메트릭의 통계를 확인하기 위해 curl을 반복적으로 실행하는 injection container 를 실행한다.

kubectl -n default run injector --image=alpine -- \
/bin/sh -c "apk add --no-cache --yes curl; \
while true; do curl -sS --max-time 3 \
http://sampleapp:8080/; done"

5분정도 후에 Prometheus로 접속하여 코드내 작성한 rate_requests 메트릭을 확인해본다.
PromQL은 아래 쿼리를 실행하였다.

rate_requests{app="sampleapp",version="prod"}

아래 그림과 같이 4개의 pod에서 70% 정도 200 OK, 30% 정도 500 Error가 발생하는 것을 확인할 수 있다.

500rate

이 메트릭을 Spinnaker 에서 확인하기 위해 Canary Pipeline을 만들자.

https://raw.githubusercontent.com/ddiiwoong/canary-demo-spinnaker/master/automated-canary.json를 JSON으로 Pipeline을 생성한다.

canary_auto

Stage별로 살펴 보기전에

  • Prerequisite
    Canary Config 구성이 먼저 필요하다. Delivery - Canary Configs 메뉴에서 신규 컨피그를 작성한다.
    • Configuration Name - kayenta-test
    • Filter Templates 메뉴를 먼저 생성한다. Canary, Baseline구분을 위해 version 정보를 선택하였다.
    • Metrics - Add Metric 은 분석을 위한 Prometheus Metric을 설정하는 단계로 error_rate가 증가(increase)하면 Pipeline을 중단시키고 Metric은 앞에서 확인한 rate_requests를 지정한다. Filter Template은 위에서 지정한 version을 선택한다. metric config
    • SCORING - 어짜피 예제는 한가지 Metric분석으로 0점 아니면 100점으로 나올것이므로 Maginal 75, Pass 95를 설정한다.
  1. 1st Stage
    • Configuration - Pipeline 실행시 초기 입력값(0-100, 10단위)으로 설정가능한 successRate 라는 Parameter를 설정한다.
  2. 2nd Stage
    • Find Baseline - 위에서 작성한 기본 Deploy Pipeline이 선택되었는지와 확인한다.
    • Deploy Canary Config - 앞에서 선택한 새로운 Parameter(successRate)를 신규 배포할 Canary Pod ConfigMap으로 설정하는 단계이다.
  3. 3rd Stage
    • Deploy Canary - yaml manifest로 Canary 버전을 배포한다. Replicas는 1로 설정하였고 배포될 Account(K8s Cluster)를 지정한다.
    • Deploy Baseline - yaml manifest로 Baseline 버전을 배포한다. 위와 동일하게 Replicas는 1로 설정하였고 배포될 Account(K8s Cluster)를 지정한다.
  4. 4th Stage
    • Canary Analysis - 중요한 Canary 분석 단계로 아래와 같이 설정을 확인한다. Prerequisite에서 설정한 Config(kayenta-test)를 선택하고 짧은 분석을 위해 1분(60초) 간격으로 3번 수행을 하도록 한다. Filter Template에서 지정한 version(version="${scope}") 분석을 위해 Baseline, Canary 설정을 하고 Location은 Namespaces로 생각하면 된다. aca config
  5. 5th Stage
    • Deploy to Production - Canary 분석이 통과하였을 경우 운영에 배포
    • Delete Canary, Delete Baseline - 성공이던 실패이던 Canary, Baseline 배포본을 삭제
  6. 6th Stage
    • Successful deployment - Canary 분석이 통과하였을 경우 최종 완료 표기하는 단계

설정이 마무리가 되면 저장을 하고 Canary 분석에 들어간다. 최초에 successRate을 70으로 배포했다면 그 이하로 설정했을 경우에는 아래와 같이 Score 0점으로 배포가 실패하고 Pipeline이 종료된다.

fail

70 이상으로 설정하게 되면 Score 100점으로 정상 배포됨을 확인할 수 있다.

success

정리

간단하게 Spinnaker 와 Prometheus Metric을 활용하여 Kayenta 기반 Canary 배포를 해봤다. 현재 Spinnaker 1.10에서 istio가 지원된다고 하니 다시 한번 확인하고 istio 기반 canary 배포와 함께 사용하는 방법을 더 연구해봐야 할 것 같다.

올해 AWS re:invent 끝나고 작년보다 큰 현자타임이 왔다. 오픈소스로 먹고사는 사람들의 기분은 다 비슷할거 같다고 생각이 든다. 12월 11일 부터 Kubecon이 열린다고 하니 Kubernetes 관련한 새로운 프로젝트와 기능들에 집중해서 남들보다 한발 나아가야하지 않을까? 오픈소스로 먹고사시는 분들 다들 힘냈으면 좋겠다.

· 8 min read

이전 포스팅 Spinnaker on Kubernetes #1에서 검토할때는 많이 개념을 이해하기 어려웠던것 같지만 어느정도 시간이 지났고 또 몇일 후에 발표도 있어서 다른 이야기를 해보고자 한다.

지난 포스팅에 대충 집고 넘어간 용어들에 대한 정리를 다시 하고 기본적인 사상들을 정리해보고자 한다. 허접한 플랫폼 엔지니어 생각이니 언제든 다른 의견을 환영하는 바이다.

What is spinnaker? (+History)

최근 트렌드인 멀티 클라우드를 지향하는 오픈소스 플랫폼이다.
2014년 Netflix의 Asgard로 시작되어 2015년에 오픈소스화 되었다.
빠른 속도와 신뢰도있는 소프트웨어 릴리즈를 위해 만들어졌으며 대부분의 메이저 클라우드 프로바이더들을 지원한다.(AWS,GCP,Azure,openstack..)
현재 Netflix, Google, MS, Veritas등이 Contribution을 하고 있다.

왜 Spinnaker를 써야하지?

여러가지 이유가 있겠지만

  • Multi-Cloud용 Continuous Delivery/Deployment Platform 으로 대체가 가능
  • 다양한 pipeline 형태로 배포가 가능하고 Rollback이 쉬움
  • 빠른 배포가 가능하고 여러번 배포가 용이함
  • 유연한 pipeline management system을 가지고 있음
  • 다양한 배포전략을 가진다(Blue-Green, Rolling Red/Black, Canary)
  • community 활동 활발 (github, slack) - 답은 잘 안해줌 ㅠㅠ
  • VM과 Container 동시에 통합관리 가능
  • CI통합 용이(Jenkins)
  • CLI를 통한 설치 및 관리(halyard)
  • VM, Helm Packaging 가능
  • RBAC 지원
  • Notification - Email, Slack, Hipchat등
  • Safe Deployment - Judgement (승인기능)
  • Chaos Monkey Built-in

이정도면 무조건 써야하지 않을까?

Jenkins vs Spinnaker

JenkinsSpinnaker
강력한 빌드서버클라우드 자원의 1차 연동
완전한 deployment tool이 아님vm & deployments 안에 빌드되어 있음
스크립팅이 많이 필요함별도의 스크립팅이 많이 필요없음
기능들이 모두 플러그인 형태CI tool이 아님(CI tools이 백엔드로)

Kubernetes vs Spinnaker

KubernetesSpinnaker
리소스 사용 제한정의한 퍼센트로 rollout
slow rollout각 단계별 검증 가능
High rollback costFast rollbacks
Linear rolloutsresource 사용량이 큼
검증단계가 없음

Deploy Pipeline

Spinnaker를 사용할때 기본적으로 아래와 같은 파이프라인으로 구성한다.
수동으로 UI나 API로 트리거링할수 있고, 자동으로 Jenkins 등과 트리거 연동하여 빌드완료시 배포되도록 할수 있다.

spinnaker-pipeline

Deployment Strategies

Spinnaker에서의 배포전략은 다음과 같이 제공된다.

deployment-strategies

Red / Black (same as Blue / Green)

  • 동일한 양의 instance로 이루어진 새로운 Server Group을 생성한다
  • 신규 Server Group이 정상상태가 되면 LB는 신규 Server Group에 트래픽을 분산한다.

Rolling red/black

  • 이전과 동일하지만 인스턴스별 또는 그룹별로 rolling

Canary

  • 가장 작은 개수의 인스턴스를 교체시키고
  • 새로운 버전으로 트래픽을 분산시킨다 (1~5프로)
  • 새로운 버전에 이슈가 없을때까지 테스트를 진행하고
  • 특정시간까지 이슈가 없으면 배포를 늘려간다.

용어정리 2탄

이전 post에서 정리한걸 다시 복기하고 추가적인 내용을들 적어봤다.

사용하면서 혼돈이 많이 생기는 부분이다 이게 GCE나 EC2를 쓰면 용어 매칭이 쉬운데 k8s를 위한 별도의 메뉴가 아닌 기능을 통합하다보니 용어가 조금 혼동스럽게 구성이 되었다.
특히 Load Balancer 부분은 Service로 매핑되고 퍼블릭 k8s에서 제공하는 Type LoadBalancer는 미지원한다.
그리고 모든 Resource들은 Deploy, Delete, Scale, Rollout(Undo, Pause, Resume)을 지원하며 Versioning이 지원된다. Versioning은 여기에 설명된 대로 strategy.spinnaker.io/versioned annotation을 통해 manifest별로 재정의가 가능하다.

SpinnakerKubernetes비고
Server GroupWorkloadsCRD의 경우 별도 Build
ClustersLogical Server Group
Load BalancerServicesLoadBalancer(k8s) 미지원
FirewallNetworkPolicies

Application Management

Spinnaker에서 Application 이란 배포하려는 서비스를 나타내는 구조라 생각하면 된다.

  • pipeline
  • Clusters, Server Group의 집합이며, firewall과 loadbalancer를 포함한다.
  • Canary Config

Cluster

Kubernetes의 Cluster가 아니라 Spinnaker에서 Server Group의 논리적인 그룹

Server Group

기본자원인 서버그룹은 배포할수 있는 artifacts(vm image, docker image, source)와 인스턴스(pod) 수, Auto-Scaling, metadata 등 기본 구성등을 가지고 있다.
서버그룹은 LoadBalacer나 Firewall 도 선택적으로 연결되고, vm이나 pod 형태로 배포된 application의 집합체라 볼수 있다.

Cloud Provider

  • IaaS - AWS, GCP, Azure, Oracle, Openstack
  • PaaS - Google App Engine
  • Orchestrator - K8s, DC/OS
  • Docker v2 Registry

Account

Cloud Provider에 인증하기 위한 Spinnaker에서만 사용하는 Account Name

Pipeline

Pipeline은 주요 배포 관리도구로 사용된다. Stage라고하는 일련의 Action으로 구성되며 파이프라인을 따라 Stage간 매개변수 전달이 가능하다.
수동으로 시작하거나, Jenkins 작업완료, Docker Registry 신규 Docker 이미지, Cron일정 또는 다른 Stage와 같은 이벤트에 의해 자동으로 트리거링되도록 구성할수 있다.
Pipeline 실행중에(시작/완료/실패) mail, slack, hipchat(사라짐)을 통해 Alert가 가능하다.

pipeline

Stage (atomic building block)

Pipeline이 수행할 동작을 말한다.
Deploy, Resize, Disable, Manual Judgement 등을 수행할수 있다.

stage

  • Stage - Multiple steps
  • Step - 진행되기전에 교정/폴링이 필요한 tasks
  • Task - 특정 Cloud Platform으로 동시에 여러 API호출
  • Operation - 단위 API

정리

용어나 개념은 어느정도 정리된듯 하고 다음 포스팅에서는 실제 multi cluster 환경에서 deploy하고 pipeline을 사용하는 내용을 적어볼 예정이다.

· 9 min read

Knative

미친놈들 모여서 미친것을 만들었군.. ㅎㅎ 예상했던 내용들을 현실로 만드는 클라스

Kubernetes 관련 비지니스를 하고 있는 입장에서 봐도 놀랄일이지만 인프라 영역부터 개발자 영역까지 모두를 추상화시키는 클라우드 네이티브의 힘이란 참 대단하다.

오늘은 knative에서 주요기능들을 둘러보고자 한다.

개인적인 생각은 Kubernetes 진영이라고 해야하나 CNCF 진영이라고 해야하나.. 그동안 노래를 부르고 주목했던 CRDs, Operators, Serverless Workload, CloudEvents, Mesh Layer 개념과 영역을 흡수해서 그 기반으로 확장시키고 있다.

kubectl apply -f https://storage.googleapis.com/knative-releases/serving/latest/release.yaml

위 코드 내용을 상세하게 보고있지만 담은것들이 정말 많다. 그래도 다 이해하려면 하나하나 챙겨봐야 한다.

오늘은 일단 코어 기능만 살펴본다.

Build

build는 Knative의 주요 custom resource이고 이를 이용하여 fetch, build, package를 수행한다. repo의 소스를 빌드하고 컨테이너로 이미지로 만들고 그다음에 Knative Serving으로 보낸다고 한다.

Build 용어

  • Build는 여러 steps을 포함하고 Builder로 구체화된다
  • Builder는 컨테이너 이미지 유형
  • Buildsteps은 repository에 push를 할 수 있음
  • BuildTemplate 는 재활용가능한 템플릿
  • Buildsource는 kubernetes Volume으로 mount되는 데이터를 정의할수 있고 git, Google Cloud Storage, 컨테이너 이미지를 지원함.
  • kubernetes Secret을 사용하여 ServiceAccount로 인증함

Serving

Knative Serving은 Kubernetes와 Istio를 기반으로 Serverless Workload가 클러스터에서 작동하는 방식을 정의하고 제어하는데 사용된다고 하지만 엄연히 Public FaaS(AWS Lambda등)와는 구별되어야 한다고 생각한다.

Serverless 라고 하는 용어를 쉽게 생각하는 사람들이 많은데 결국 나중에는 간단한 애플리케이션들은 다 Serverless 스타일로 전환될것이라는 사상을 서비스나 플랫폼에 넣고 있는 추세다.

CNCF 진형의 Cloud Event라고 하는 이벤트 그리드방식의 표준화를 따라 가는것인지 아니면 새로운 스타일을 정의하려고 하는것인지는 그들의 향후 Cloud Native 로드맵에 달려있다 해도 무방할것 같다.

  • Serverless Container의 신속한 배치가 가능
  • Automatic scaling up and down to zero
  • Istio Component
  • 배포 된 코드 및 config의 특정 시점 스냅 샷

Serving Resources

CRDs로 정의한 Objects 집합체, 이러한 Object들은 Serverless 워크로드 형태로 정의되고 사용된다. 가장 인상깊고 중요한 문구는 Request-driven compute that can scale to zero 인 것 같다.

한동안 유행했던 OpenPaaS, CF기반의 PaaS 플랫폼을 뛰어넘는 구축형 그것도 스프링부트 영역까지도 kubernetes 기반 이벤트 드리븐 서버리스로 간다는 이야기...

이미 퍼블릭으로는 GA도 되었다.

우리 팀원들과 함께 열심히 vmware dispatch framework으로 개발하고 있지만 결국 pivotal과 vmware는 거의 한몸이기에 더욱 더 변화가 필요한 순간이다.

serving

  • Route는 사용자 서비스에 대한 HTTP endpoint를 제공.
  • Revisions은 code(function)와 config로 구성된 불변의 스냅샷. Route를 통해 endpoint를 할당받지 못한 Revision은 자동으로 kubernetes resource에서 삭제됨
  • Configuration은 요구되는 Revision 최신 상태를 기록하고 생성하고 추적할수 있음. 소스 패키지(git repo나 archive)를 컨테이너로 변환하기 위한 내용이나 메타데이터등을 포함시킬수 있음.
  • ServiceRoutesConfigurations 리소스의 추상화된 집합체. 모든 워크로드의 lifecycle을 관리함. 트래픽을 항상 최신의 revision으로 route되도록 정의할수 있음

Events

CNCF의 CloudEvent Spec. 기반으로 하는 이벤트를 produce/comsume 하는 방법을 제공한다. 플러그인 형태로 이벤트를 수신할수 있고 다양한 pub/sub 스타일의 broker service를 통해 제공될수 있다.

Azure는 이미 EventGrid서비스를 GA를 한 상황이고 Pivotal 진영도 Serverless Workload는 Knative기반으로 넘어간다고 했으니 Dispatch 도 결국 따라가지 않을까 생각해본다.

eventing_concept

Bus

Kafka나 Nats와 같은 메시지 Bus를 통해 K8s기반의 pub/sub을 제공하는 개념. 이벤트는 Channel에 의해 게시되고 관심있는 사람에게 라우팅됨.

  • Channel : 여기서 이야기 하는 채널은 특정 bus에 사용되는 이벤트를 받기 위한 네트워크 기반 엔드포인트
  • Subscription : Channel에서 수신한 이벤트를 관심있는 target, DNS이름으로 표현되는 이벤트에 연결함
  • Bus : (kafka topic에 이벤트가 전달되는것 처럼) 특정 지속성 전략을 사용하여 Channel과 Subscription을 구현하는데 필요한 적용 계층을 정의함

현재 3가지의 Bus가 제공됨 (Kafka, Stub, GCP PubSub)

Sources

Source는 K8s 외부의 데이터 소스를 프로비저닝하고 이를 클러스터로 라우팅하기 위한 추상화 레이어를 제공함. 아래와 같은 소스들을 제공하고 있음

  • Feed : EventType과 Action (CloudEvents 호환 HTTP endpoint)간의 연결을 정의하는 기본 객체
  • EventType and ClusterEventType : EventSource에서 분리되는 공통스키마로 특정 이벤트의 집합, EventType은 Namespace 범위내에서 사용되고 ClusterEventType은 모든 Namespace에서 사용될수 있도록 관리자에 의해 설치됨
  • EventSource and ClusterEventSource : 하나 이상의 EventTypes를 생성 할 수있는 외부 시스템을 기술함

현재 3가지 Sources를 제공함

  • K8sevents : Kubernetes Events를 수집하고 CloudEvents 타입으로 표시함
  • Github : PR(pull request) notification을 수집하고 CloudEvents 타입으로 표시함
  • GCP PubSub : GCP PubSub topic으로 publish된 이벤트를 수집하고 CloudEvents 타입으로 표시함

Flows

마지막으로 Source에서 Endpoint까지 묶어주는 Flow라고 부르는 높은 수준의 추상화가 있다. Spec으로 이벤트가 라우팅된 Channel과 Bus를 기재하여 사용할 수 있다. Flow는 Eventing에서 최상위 개념으로 사용자가 선택할수 있고, 외부 Source 이벤트에서 목적지까지 원하는 경로를 기술할수 있다.

정리

워낙 방대한 양을 가지고 있고 이해하려고 노력하면서 적다보니 번역위주로 되어버렸다. 원래 다음번에 Nats Streaming을 다룰 예정이였으나, 당분간은 knative 구성요소를 이해하고 적용하는 위주로 포스팅을 할 예정이다. 아마도 모듈별(Serving, Building, Eventing) 시리즈가 될 듯 하다.